Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity
نویسندگان
چکیده
Low-grade heat from geothermal sources and industrial plants is a significant source of sustainable power that has great potential to be converted to electricity. The two main approaches that have been extensively investigated for converting low-grade heat to electrical energy, organic Rankine cycles and solid-state thermoelectrics, have not produced high power densities or been cost-effective for such applications. Newer, alternative liquid-based technologies are being developed that can be categorized by how the heat is used. Thermoelectrochemical cells (TECs), thermo-osmotic energy conversion (TOEC) systems, and thermally regenerative electrochemical cycles (TRECs) all use low-grade heat directly in a device that generates electricity. Other systems use heat sources to prepare solutions that are used in separate devices to produce electrical power. For example, low-temperature distillation methods can be used to produce solutions with large salinity differences to generate power using membrane-based systems, such as pressure-retarded osmosis (PRO) or reverse electrodialysis (RED); or highly concentrated ammonia solutions can be prepared for use in thermally regenerative batteries (TRBs). Among all these technologies, TRECs, TOEC, and TRBs show the most promise for effectively converting low-grade heat into electrical power mainly due to their high power productions and energy conversion efficiencies.
منابع مشابه
Membrane-free battery for harvesting low-grade thermal energy.
Efficient and low-cost systems are desired to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). An attractive approach is the thermally regenerative electrochemical cycle (TREC), which uses the dependence of electrode potential on temperature to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying the temperature, an electrochem...
متن کاملAn electrochemical system for efficiently harvesting low-grade heat energy.
Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the dependence of electrode potential on temperatu...
متن کاملThermal Capacitive Electrochemical Cycle on Carbon-Based Supercapacitor for Converting Low-grade Heat to Electricity
It is a great challenge to efficiently convert low-grade heat (<100°C) to electricity. Currently available heat-to-current converters, such as thermoelectric generators, operating in a low-grade heat regime reach efficiencies no higher than a few percent (<3%). Herein, we illustrated a thermal capacitive electrochemical cycle (TCEC) using electrochemical cell, where the connection to the hot or...
متن کاملHigh-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes
Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-co...
متن کاملCharging-free electrochemical system for harvesting low-grade thermal energy.
Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical...
متن کامل